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1 Morphological Atom Segmentation
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Figure S1: Overview of our morphological segmentation pipeline. (a) Example of a species
matrix of a general perovskite Y bSnO3. (b) All connected components of the species
matrix are first labeled. This yields regions that contain one or more clusters. (c) For
each cluster, if the convexity is above 0.8, the class is determined to be a single cluster.
Otherwise the region is iteratively eroded and segmented using the Watershed algorithm,
in order to isolate individual clusters.

The UNet architecture yields a reconstructed species matrix, S ′, where each voxel therein

is labeled according to the atomic number of the contained site (or zero otherwise). In

addition, the UNet gives the corresponding binary mask of the segmentation, S ′
B.

An example of a species matrix for a perovskite Y bSnO3 is shown in Figure S1(a).

To convert this to atomic coordinates, the centroids of the labeled regions need to be

determined. It is clear to a human that this matrix contains five atomic sites. However,

automatic determination of the centroids is non-trivial owing to the overlap of atomic

sites, by virtue of labeling all voxels within the ionic radius. In this work, we treat

this problem as one of unsupervised clustering, whereby we attempt to find the number

of clusters (atoms) and their centroid voxels to determine the final atomic coordinates.

We have implemented a novel morphological clustering algorithm based on Watershed

segmentation1 taking ideas from Abdolhoseini et al.2. The basic idea of the algorithm is

to find clusters that maximize the convexity of individual clusters.

The full algorithm is outlined in Algorithm S1. Starting with the binary mask of the
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species matrix, all connected components are labeled in order to distinguish high-level

cluster regions. Each of these sub-regions is cropped from the original image to determine

the convexity according to

convexity(R) =
nonzero(R)

nonzero(Rchull)
(1)

where R is a region of the image, Rchull is the convex hull of said region and nonzero

counts the non-zero voxels.

If the convexity is above a pre-defined threshold (taken as 0.8 herein), then the region is

taken to be a single cluster and the process moves onto the next region. If instead the

region is below the minimum convexity threshold, then it is deemed to contain multiple

clusters and the Watershed algorithm attempts to segment them further. To do this,

single dilation and erosion steps are executed on the region to form the certain background

and foreground regions, with the difference being an ”unknown” region that needs to be

labeled. Watershed segmentation is carried out using the certain foreground as markers.

This yields labeled sub-clusters that may or may not contain multiple atomic sites. The

whole algorithm then repeats up to a defined number of iterations (five herein). The

process also terminates if the size of the clusters becomes too small (less than eight voxels)

as a result of the erosion steps.

After Watershed segmentation, regions corresponding to individual clusters were identified.

The atomic sites were then determined by finding the centroid of each region. The

corresponding atomic species is determined by majority voting, whereby the Watershed

regions are compared to S and the most common voxel label is chosen as the atomic

species.

We evaluated this method on the out-of-sample crystal structures, the results of which

are displayed in Figure S2. This demonstrates that the method correctly estimates the

number of atoms in the vast majority of cases.

For reference, prior to achieving this successful outcome using the Watershed algorithm,
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Algorithm 1: Segment

Input:
species . Species label matrix
binary . Binary Species label matrix

Output: R

Params:
it . Current Iteration
wmin . Minimum object size
min convexity . Minimum cluster convexity

Segment
labels = ConnectedComponents(binary)
for label in labels do

bounding box = CalcBBox(label)
Bc = crop(binary, label)
Sc = crop(species, label)
convexity = CalcConvexity(Bc)
if convexity ≥ min convexity: then

R[bounding box] = label
continue

end
else

fg = erode(Bc)
markers = ConnectedComponents(fg)
ws = WatershedSegmentation(Bc, markers)
if ws.size ≥ min size and it ≤ max iters then

ws = Segment(Sc, ws)
end
R[bounding box] = ws

end

end
Return: R
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Figure S2: Out-of-sample validation of Watershed segmentation. Difference between the
true and predicted number of atoms with our Watershed segmentation algorithm. The
method correctly determined the number of atoms in nearly all cases.
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we had explored various multiple off-the-shelf tools for unsupervised clustering including:

DBSCAN3 and K-Means4. However, these had little success. In most cases, the off-the-

shelf tools under-estimated the number of atomic sites by failing to separate regions with

high overlap. These failings further justify our choice of the Watershed algorithm.
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2 Property-Prediction Implementation Details

2.1 Data

The MaterialsProject5 database was used to train our property-prediction model, since it

contains crystallographic information files (CIFs) and corresponding calculated properties

for a large number of crystal structures. It is important to emphasize that these data

include, but are not limited to, those used to train the VAE-UNet pipeline. In order

to encourage reproducibility, we provide the MaterialsProject identifiers of the crystal

structures that were used to train our property-prediction model, as well as a script used

to obtain the crystal structures using the MaterialsProject API. These scripts are available,

along with the full source code at https://github.com/by256/icsg3d.

2.2 Padding Crystal Graphs

Owing to the nature of the graph neural network (GNN) used for property prediction, we

chose to pad all input crystal structures to sidestep the problem of variable-sized inputs

to our GNN. We selected a maximum number of 50 atoms per unit cell for all crystal

structures in the training set, and padded all crystal structures which had fewer atoms as

follows. Firstly, for the node-feature matrix, we added several rows of zero vectors until

the number of rows reaches 50. Since our node features are binary, this corresponds to

adding several ’empty’ nodes to the graph, in which none of the node features are present.

Similarly for edge features, we pad the edge-feature tensors with zero vectors such that

the resulting number of rows and columns is 50.

2.3 Masking Translations

It is necessary to mask translations during the graph transformations in order to ensure

that nodes added by padding do not contribute to the learned representation and property

predictions. For example, suppose that a crystal graph with several padded nodes is
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passed through the GNN. When the node embeddings of the graph are projected by

a weight matrix, no information is introduced to the padded nodes, since the matrix

multiplication of a weight matrix with zero vectors still produces zero vectors. However,

when a translation by a bias term follows this transformation, zero padded node-feature

vectors have the potential to become non-zero. It is therefore crucial that these newly

introduced spurious nodes are dealt with to ensure that the performance of the GNN is

not hindered. To do so, we multiply the node-feature matrix by a binary-mask matrix, in

which rows corresponding to nodes which exist in the graph have a value of 1, and rows

which correspond to padded rows in the graph have a value of 0. After each translation in

our GNN, we multiply our node-feature matrix by this mask, to ensure that the structure

of the graphs input to the model are consistent throughout.

2.4 Pooling Padded Graphs

Average pooling is used in our GNN, owing to the padding present in our crystal graphs.

Naively averaging over the nodes of the node-embedding matrix would produce an incorrect

result, since zero-padded ’nodes’ would contribute to the average over all nodes. Thus, we

solve this problem by simply averaging over the true nodes in each graph, by summing

over all nodes (padded nodes do not contribute to the sum) and dividing by the number

of true nodes in each graph.

2.5 Crystal-Graph Features

The inputs to the GNN are computed directly from CIFs, and are as follows:

• An N × Fv node-feature matrix, whereby each row is an Fv-dimensional feature

vector for each of the N atoms in the crystal.

• An N × N × Fe edge-feature tensor, consisting of N × N edge-feature vectors of

dimensions Fe.
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• An N × E node-neighbor index matrix, denoting the indices of neighbors of each

node in the node-feature matrix, where E is the predefined number of neighbors of

each node in the graph.

As for the node and edge features that make up our inputs, we use the same features as

Xie and Grossman6. The list of node features used is: group; period; electronegativity;

covalent radius; number of valence electrons; first ionization energy; electron affinity; block

(s, p, d, f); atomic volume. Edge features are simply discretized distances between pairs of

atoms.

2.6 Training Procedure for Structure-Property Models

For properties where fewer training samples were available, we employed transfer learning

and fine-tuning to improve the predictive capability and generalizability of these models.

This includes the bandgap, bulk modulus, shear modulus, Poisson ratio, dielectric constant

and refractive index models. For the pre-trained bases of these models, we utilised the

weights learned by the formation energy model, which was trained on over 35000 samples.

This includes the very first layer of the model, which is a fully-connected dense layer,

and any following graph convolution layers. We then freeze the weights of these layers,

and train to update the weights of the remaining fully-connected layers which follow the

graph layers for 120 epochs. Following this, we unfreeze all layers (taking care to keep the

parameters of the batch normalisation operations in the graph layers frozen), and fine-tune

the entire model for 10 epochs with a learning rate that is decreased by a factor of 100.
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3 List of Candidates

Table S1 shows the full list of candidate compounds and their associated predictions.

Table S1: Full list of candidate compounds generated us-

ing our pipeline alongside corresponding formation energy

predictions and DFT validation results.

Formula a b c Ef,DFT Ef,CGCNN |∆Ef | |∆Bonds|

Å Å Å (eV/atom) (eV/atom) (eV/atom) (%)

ZnPa 4.94 4.94 5.15 0.42 0.38 0.04 0.00

KCa 4.42 4.19 4.2 0.55 0.60 0.05 0.00

CoAs 3.28 3.39 3.08 0.56 0.62 0.06 13.85

SmCr 4.05 3.98 4.27 0.47 0.53 0.06 1.71

KWO3 4.05 4.06 3.85 -1.83 -1.90 0.07 3.26

CaReO3 4.38 4.43 4.52 -1.36 -1.43 0.07 10.24

AlSiO3 3.78 3.6 3.62 -1.99 -2.07 0.08 4.91

Rh2NdHo 5.43 5.36 5.42 -0.31 -0.23 0.08 0.19

ScWO3 4.61 4.74 4.55 -0.78 -0.88 0.10 11.44

Y V O3 4.02 4.18 4.18 -2.02 -2.16 0.14 1.58

MgWO3 3.88 4.05 3.88 -1.80 -1.62 0.18 0.46

PrMgO3 3.83 3.78 3.89 -2.64 -2.82 0.18 0.78

LuPO3 4.15 4.19 4.06 -1.90 -1.71 0.19 12.82

Pd2NdEu 5.18 5.23 5.12 -0.84 -0.63 0.21 0.21

Y ReO3 4.4 4.02 4.36 -1.40 -1.62 0.22 9.39

TiAlO3 3.86 3.88 3.95 -1.70 -1.94 0.24 3.08

Y bV 3.6 3.72 3.97 0.76 0.50 0.26 3.19

ErPO3 4.14 3.83 4.17 -2.20 -1.93 0.27 11.61

CeBO3 3.38 3.36 3.58 -2.18 -2.46 0.28 6.98
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Formula a b c Ef,DFT Ef,CGCNN |∆Ef | |∆Bonds|

Å Å Å (eV/atom) (eV/atom) (eV/atom) (%)

CrAlO3 3.54 3.63 3.9 -1.80 -2.09 0.29 4.61

LiWO3 4.41 3.94 4.08 -1.30 -1.60 0.30 11.34

MgN 3.02 3.54 3.46 0.42 0.02 0.40 23.05

GdMgO3 3.75 3.66 3.82 -2.40 -2.84 0.44 0.53

TiCrO3 3.87 3.64 3.75 -1.28 -1.84 0.56 0.53

HfSiO3 3.95 3.72 3.95 -2.40 -1.84 0.56 8.26

MgPO3 3.47 3.44 3.57 -1.81 -2.38 0.57 0.52

TiSiO3 3.74 3.57 3.58 -1.44 -2.01 0.57 5.23

ScReO3 4.51 4.28 4.25 -0.60 -1.23 0.63 11.27

ScPO3 3.78 3.75 3.54 -1.51 -2.19 0.68 9.76

TbMnO3 3.88 4.04 3.85 -1.59 -2.31 0.72 1.27

TmMgO3 4.16 3.95 3.9 -1.84 -2.60 0.76 1.25

LuMnO3 3.92 4.04 3.49 -1.28 -2.08 0.80 1.26

LiReO3 3.92 3.76 3.67 -1.15 -1.98 0.83 0.69

Y IrO3 4.7 4.61 4.71 0.30 -0.77 1.07 12.20

Al2MnOs 3.85 3.87 3.89 0.22 -0.86 1.08 1.81

Ru2ScAl 4.21 4.19 4.26 0.39 -0.72 1.11 0.40

SmCo 3.8 3.99 3.27 -1.46 -0.32 1.14 4.61

CaBeO3 3.73 3.89 3.82 -1.28 -2.46 1.18 2.62

ErMnO3 4.26 4.02 3.91 -0.96 -2.14 1.18 10.83

MoAs 4.15 3.9 3.93 2.22 0.97 1.25 27.80

TaSb 3.92 3.88 3.88 1.94 0.67 1.27 13.36

CeBe 3.52 4.17 3.45 1.60 0.30 1.30 3.23

EuV 3.63 3.65 3.95 -1.08 0.50 1.58 3.21

CeMgO3 3.59 3.57 3.26 -1.52 -3.11 1.59 4.03
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Formula a b c Ef,DFT Ef,CGCNN |∆Ef | |∆Bonds|

Å Å Å (eV/atom) (eV/atom) (eV/atom) (%)

Pb2PrCa 5.44 5.33 5.19 1.10 -0.53 1.63 2.35

NaT l 4.11 4.16 3.89 1.79 0.06 1.73 0.99

V I 3.76 3.38 3.88 2.39 0.56 1.83 7.35

CrI 4.2 4.13 4.38 2.32 0.43 1.89 23.60

ScZnO3 3.89 4.02 3.82 0.01 -2.39 2.40 1.20

Sc2MnAs 4.47 4.23 4.16 1.68 -0.76 2.44 0.70

ZnIn 5.00 4.94 4.94 3.54 0.68 2.86 17.74

Y2ErAg 5.55 5.43 5.43 3.07 0.09 2.98 0.48

Ho2EuPd 5.33 5.48 5.27 2.74 -0.27 3.01 0.54

Ho2Y bCd 5.09 5.1 4.98 2.82 -0.22 3.04 0.83

Pd2CdEu 4.98 4.86 4.85 2.45 -0.73 3.18 0.92

Er2HoAg 5.14 5.04 4.92 3.15 -0.20 3.35 0.40

Sc2RuRh 4.09 4.22 4.36 2.59 -0.95 3.54 0.50

ZnSb 4.25 4.34 4.61 4.02 0.20 3.82 15.00

LiCd 3.82 3.87 3.28 3.89 0.06 3.83 5.74

NdFe 4.01 4.03 3.99 -3.39 0.49 3.88 1.25

Pd2Y bSm 5.26 5.21 5.17 3.28 -0.60 3.88 0.19

Pd2EuTm 5.43 5.3 5.24 3.64 -0.43 4.07 0.94

NiSb 3.66 3.79 3.59 5.12 0.82 4.30 20.38

Dy2ZnAu 5.31 5.11 5.32 4.71 -0.27 4.98 1.07

Ho2ZnAu 5.26 5.24 5.12 4.79 -0.31 5.10 2.50

InAu 5.02 4.88 4.75 5.75 0.60 5.15 12.08

Pm2ZrPd 5.14 5.03 5.11 -5.62 -0.32 5.30 10.80

CuSb 3.97 3.79 4.05 6.32 0.95 5.37 12.19

Lu2ZnAu 5.16 5.27 5.17 5.25 -0.25 5.50 1.54
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Formula a b c Ef,DFT Ef,CGCNN |∆Ef | |∆Bonds|

Å Å Å (eV/atom) (eV/atom) (eV/atom) (%)

GaCu 3.93 3.55 3.98 6.42 0.88 5.54 2.62

Au2TmPb 5.63 5.39 5.74 6.09 -0.01 6.10 1.07

Pd2LaAu 5.13 5.32 5.34 5.87 -0.28 6.15 0.30

NiRh 3.89 3.96 4.01 8.12 1.36 6.76 32.88

ZnAu 5.06 4.98 4.96 9.92 0.60 9.32 5.60

Ho2AgAu 5.5 5.31 5.18 x -0.58 x x

Ho2CdPd 5.16 5 4.81 x -0.60 x x

Average 1.99 5.99
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4 Materials Project and ICSD Records for Polymorphs

of VAE-generated Crystal Structures

Table S2 below shows comparisons between the VAE-generated candidates and experimentally/computationally-

determined polymorphs present in the ICSD and Materials Project database.

Table S2: Comparison of MAE between VAE-generated candidates and non-cubic poly-
morphs present in the MaterialsProject Database.

MAE a b c Ef ICSD ID Crystal System
Candidate Å Å Å eV/atom

NiSb 0.18 0.05 1.44 0.39 646419 hexagonal
CoAs 0.17 0.06 1.86 0.41 43888 hexagonal

LuMnO3 2.05 1.94 7.09 0.59 280779 hexagonal
V I 0.31 0.69 4.45 0.82 hexagonal

MgWO3 1.30 1.25 3.89 0.42 orthorhombic
MoAs 0.90 2.02 2.39 0.35 43188 orthorhombic
TiCrO3 1.13 1.63 3.75 0.30 orthorhombic
AlCrO3 1.37 1.30 3.50 0.19 orthorhombic
ScAlRu2 4.98 6.44 6.36 3.38 orthorhombic
ErMnO3 0.89 1.69 3.41 0.52 183141 orthorhombic
TbMnO3 1.35 1.72 3.55 0.51 252442 orthorhombic
ZnSb 1.89 3.34 3.47 0.09 601137 orthorhombic
CeBO3 1.62 2.36 4.53 0.51 99689 orthorhombic
Y V O3 0.16 0.45 0.44 0.34 tetragonal
LiReO3 1.37 1.54 1.64 0.12 35012 trigonal
NiRh 1.37 1.44 0.31 0.06 trigonal

Average MAE 1.48 1.99 3.48 0.59
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5 Optimization of Delocalized Compounds

All machine-learning models are inherently biased by their training data. For this work,

this means that our generative and predictive models are restricted by the limitations of

the DFT calculations performed by the Materials Project. Such calculations often struggle

to optimize in cases of compounds containing highly delocalized electrons, as present in

certain rare-earth metals, the chalcogens, and the metalloids. Table S3 below shows the

results of optimizing three such generated materials, NaTe, TiSe and AgTe. As shown,

in these cases, the bond lengths vary substantially from the predicted values, by over 38%

in TiSe.

Table S3: Results of the geometry-optimizatied DFT calculations on compounds containing
delocalized electrons.

Candidate
|∆E|
(eV/atom)

|∆bonds|
(%)

|∆cell|
(%)

TiSe 2.89 38.6 0
NaTe 1.21 26.7 0
AgTe 4.44 30.0 0

S14



References
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